
CS 201: Data Structures Friday, 2018-01-19

Stacks and Queues

(1) Read through the following code. Draw the states of the variables stack and queue when
indicated.

1 Stack<String> stack = new CarlStack<String>();

2 Queue<String> queue = new ArrayDeque<String>();

3 queue.add("tofu");

4 queue.add("broccoli");

5 queue.add("rice");

6 // (a) Draw the states of stack and queue

7 System.out.println(queue.element());

8 while (!queue.isEmpty())

9 {

10 stack.push(queue.remove());

11 }

12 // (b) Draw the states of stack and queue

13 for (int i = 0; i < 2; i++)

14 {

15 queue.add(stack.peek());

16 }

17 // (c) Draw the states of stack and queue

stack queue

| | ----------------------

| | tofu broccoli rice

| | ----------------------

+--------+

| rice | ----------------------

|broccoli|

| tofu | ----------------------

+--------+

| rice | ----------------------

|broccoli| rice rice

| tofu | ----------------------

+--------+

(2) We briefly talked about post-fix notation. Brainstorm with your partner how to evaluate a
post-fix notation expression using a stack; that is, find the final value that the expression
represents. Write your steps down in pseudocode (step-by-step English). Assume your
algorithm will take a list as input. [Hint: Read the next question.]
create an empty stack

for each item in list:

if item is binary operator op:

second = pop off stack

first = pop off stack

answer = evaluate "first op second"

push answer onto stack

else:

push item onto stack

finalAnswer = pop off stack

return finalAnswer

(3) You receive the following list as input to your algorithm: [3, 4, 2, /, 8, +, *]. Walk
through the steps of your algorithm with this input, and draw the state of the stack after
each pop or push.
| | | | |2| | | | | | | |8| | | | | | | | | | | | | | |

| | |4| |4| |4| | | |2| |2| |2| | | |10| | | | | | | | |

|3| |3| |3| |3| |3| |3| |3| |3| |3| | 3| |3| | | |30| | |

+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +--+ +-+ +-+ +--+ +-+

(over)

Yang 2 January 22, 2018

(4) Palindromes are words or phrases that read the same forward and backward, ignoring
spaces, punctuations, or capitalisation (e.g., “racecar” or “Sit on a potato pan, Otis!”).
How would you use a stack and a queue to check whether a word or phrase is a palindrome?
Write down an algorithm (in pseudocode) to check if something is a palindrome using these
two data structures.
create 1 stack and 1 queue

go through the string in order, one character at a time

if it is not a letter, ignore and go on to next letter

convert letter to lower case

push it onto the stack and add it to the queue

afterwards, process stack and queue

while the stack is not empty

pop the top item from the stack and remove the first item from the queue

if they differ, return false

if the stack is exhausted, return true

Code:

public static boolean isPalindrome(String s)

{

Stack<Character> stack = new CarlStack<Character>();

Queue<Character> queue = new ArrayDeque<Character>();

for (int i = 0; i < s.length(); i++)

{

char character = s.charAt(i);

// ignore non-letter characters

if (Character.isLetter(character))

{

// ignore upper/lower case differences

character = Character.toLowerCase(character);

stack.push(character);

queue.add(character);

}

}

while (!stack.isEmpty())

{

if (stack.pop() != queue.remove())

{

return false;

}

}

return true;

}

Extra time? Think about how to evaluate infix expressions, convert between infix and postfix,
implement a queue using two stacks, implement a stack using two (or one!?) queues; or write Java
code to implement your pseudocode algorithms.

